IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation.
نویسندگان
چکیده
Anther cuticle and pollen exine are protective barriers for pollen development and fertilization. Despite that several regulators have been identified for anther cuticle and pollen exine development in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), few genes have been characterized in maize (Zea mays) and the underlying regulatory mechanism remains elusive. Here, we report a novel male-sterile mutant in maize, irregular pollen exine1 (ipe1), which exhibited a glossy outer anther surface, abnormal Ubisch bodies, and defective pollen exine. Using map-based cloning, the IPE1 gene was isolated as a putative glucose-methanol-choline oxidoreductase targeted to the endoplasmic reticulum. Transcripts of IPE1 were preferentially accumulated in the tapetum during the tetrad and early uninucleate microspore stage. A biochemical assay indicated that ipe1 anthers had altered constituents of wax and a significant reduction of cutin monomers and fatty acids. RNA sequencing data revealed that genes implicated in wax and flavonoid metabolism, fatty acid synthesis, and elongation were differentially expressed in ipe1 mutant anthers. In addition, the analysis of transfer DNA insertional lines of the orthologous gene in Arabidopsis suggested that IPE1 and their orthologs have a partially conserved function in male organ development. Our results showed that IPE1 participates in the putative oxidative pathway of C16/C18 ω-hydroxy fatty acids and controls anther cuticle and pollen exine development together with MALE STERILITY26 and MALE STERILITY45 in maize.
منابع مشابه
IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation1[OPEN]
National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant ...
متن کاملCytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice.
The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, abort...
متن کاملDefective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase.
Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemica...
متن کاملWax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development.
In vegetative leaf tissues, cuticles including cuticular waxes are important for protection against nonstomatal water loss and pathogen infection as well as for adaptations to environmental stress. However, their roles in the anther wall are rarely studied. The innermost layer of the anther wall (the tapetum) is essential for generating male gametes. Here, we report the characterization of a T-...
متن کاملOsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice.
Synthesis of lipidic components in anthers, including of the pollen exine, is essential for plant male reproductive development. Plant lipid transfer proteins (LTPs) are small, abundant lipid-binding proteins that have the ability to exchange lipids between membranes in vitro. However, their biological role in male reproductive development remains less understood. Here, we report the crucial ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 173 1 شماره
صفحات -
تاریخ انتشار 2017